Remember: $i = \sqrt{-1}$ Imaginary unit

By adding real numbers to real multiples of this imaginary unit, the set of complex numbers is obtained.

Definition of a Complex Number

Let a and b be real numbers. The number a + bi is called a **complex number**, and it is said to be written in standard form. The real number a is called the real part and the real number b is called the imaginary part of the complex number.

When b = 0, the number a + bi is a real number. When $b \neq 0$, the number a + bi is called an imaginary number. A number of the form bi, where $b \neq 0$, is called a pure imaginary number.

For instance, the <u>standard form</u> of the complex number $-5 \pm \sqrt{-9}$ is $-5 \pm 3i$

Find the sum and difference of the following complex numbers Ex. 1

a.
$$7+3i+5-4i$$
 $(7+5)+(3-4)(-12-i)$
b. $3+4i-(5-3i)$ $(3-5)+(4+3)(-2+7i)$
c. $2i+3-4i-(-3-3i)$ $(-3+3)+(2-4+5)(-3+3)$

c.
$$2i + 3 - 4i - (-3 - 3i)$$

 $(-3+3) + (2-4+5)($

Multiplying with complex numbers:

* remember if
$$i = \sqrt{-1}$$
 then $i^2 = -1$

a.
$$(2-4i)(3+3i)$$
 b. $6+6i-12i-12i^2$
 $6-6i-12i-12i^2$
 $6-6i-12i-12i^2$

$$i = \sqrt{-/} = i$$

$$i^2 =$$

***Ex. c and d show you how two complex numbers can produce a real number, when multiplying. These are examples of multiplying conjugates.

Quotients of Complex numbers

" keep it real"

The quotient of two complex numbers is in standard form, after the numerator and denominator have been multiplied by the conjugate to end with a real number as the denominator.

Ex. 3 Write in standard form

Ex. 4 Write in standard form

$$\frac{2+3i}{4-2i} \frac{(4/7i)}{(4/7i)} = \frac{4/7i}{16-8i+8i-4i} = \frac{2+i}{2-i} \cdot \frac{(2+i)}{(2+i)} = \frac{4/72i+2i+i^2}{4/72i-2i-i^2} = \frac{4/74i-1}{4/72i-2i-i^2} = \frac{4/74i-1}{4/72i-1} = \frac{4$$

Principal Square Root of a Negative Number

When a is a positive real number, the principal square root of -a is defined as

$$\sqrt{-a} = i \sqrt{a}$$

Ex.
$$\sqrt{-3} = \sqrt{3(-1)} = \sqrt{3}\sqrt{-1} = i\sqrt{3}$$

Multiply and write in standard form

Ex.
$$\sqrt{-5} * \sqrt{-10}$$
 $\sqrt{-5} * \sqrt{-75} * \sqrt{-75} * \sqrt{-75} * \sqrt{-75} * \sqrt{-5} \sqrt{-5}$

Ex.
$$\sqrt{-75} * \sqrt{-75}$$

 $\sqrt{175} \cdot \sqrt{175}$ (-1)75
 $\sqrt{175} \cdot \sqrt{15}$ (-1)75

 $ex.(3i)^4$ $3' (3i)^4$

Notice the parabola is not intersecting the x axis.

So the "roots" are not in the ground. This means the roots are imaginary

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Ex. Find the complex roots:

 $8x^2 + 14x + 9 = 0$ $X = \frac{-14 + \sqrt{142 - 4(8)(1)}}{-14} = -\frac{14 + \sqrt{196 - 288}}{16}$

HW p.152 11,14,15,18,19,22, 33,34,37,38,45,46,72,76,77,83,84